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We apply equivalence particle principle to a higher order spatial Nonlinear Schrödinger Equation (NLSE) that models the 
propagation of a beam with higher order nonlinearity (χ(5)). Using this principle, expressions for acceleration, spatial 
frequency, spatial period and other variables for a spatial soliton can be derived from the solution of a dual power law (or 
parabolic law) homogenous Nonlinear Schrödinger Equation(NLSE). These results agree well with numerical simulations of 
the perturbed Nonlinear Schrödinger Equation. We show that if the expression of the acceleration is bounded this means 
the spatial soliton propagates with a swing effect. Taking one step further in this theoretical study, we investigate the swing 
effect through the use of numerical simulations.  
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1. Introduction 
 
Optical solitons often occur as self-trapped transverse 

spatial profiles (or self induced transparency) in non-linear 
planar waveguides. The most interesting property for such 
propagating wave packets is their robustness when 
colliding with each other, while maintaining space-
invariance. Spatial optical solitons have been observed in 
different experiments [13,19], providing the opportunity of 
the all-optical devices: as arithmetic units, logical 
operators, switchers and modulators.  Recently, NLSE 
models have been derived in nanotechnology in particular 
plasmonics or spatial plasmon solitons [1-4,28]. These 
subwavelength spatial solitons were induced by nonlinear 
Kerr/metal interface [3,4], tapering nonlinear 
dielectric/metal waveguides [5,6], and active 
dielectric/metal/passive dielectric waveguides [7]. So 
current soliton theoretical methods have been applied to 
these models, but there is still research to be done at the 
microscale regime[28-30,32].   

     Kerr spatial soltions have been shown to oscillate 
during the propagation when subjected to perturbation 
representing a refractive index profile change.  Previously, 
the oscillatory behavior of spatial solitons propagating in 
an inhomogeneous refractive index profiles has been 
studied. F. Garzia et. al. [8] investigated the swing effect 
of spatial soliton for the Gaussian refractive index profile. 
A. Suryanto investigated the oscillatory motion in his 
Ph.D. thesis in 2003[9]. L.W. Dong and H. Wang et. al 
[10]  have studied oscillatory behavior of spatial soliton in 
a gradient refractive index waveguide with nonlocal 
nonlinearity. M. Edwards et. al [11,12 ] has studied the 

spatial soliton under triangular refractive index profile 
perturbation. These results have been compared with the 
swing effect from the Gaussian profile.  

The homogeneous Nonlinear Schrödinger Equation 
(NLSE) is the model that describes spatial and temporal 
soliton propagation is solved using the inverse transform 
method [13,14]. This method cannot be used to solve 
equations with higher order diffraction or nonlinearity, 
which are more applicable to real optical soliton systems.  
These equations are not integrable and the integrals of 
motion are not conserved [15]. The equivalence particle 
theory which considers the light beam as a particle can be 
used to describe propagation of a single optical spatial 
soliton in nonlinear media [8-11,16-19]. Under an index of 
refraction perturbation, the soliton beam behaves as a 
particle in a Newtonian gravitational potential well. This 
theory applies to short optical devices and bulk materials 
that can produce propagational diffraction and the Kerr 
Effect.  With this property, we can calculate deterministic 
features of the soliton propagation.  

In this paper, we consider the oscillatory behavior of 
nonparaxial spatial solitons or quasi-solitons in a 
waveguide reduced to a parabolic law NLSE perturbed by 
a medium with a Gaussian refractive    index profile 
change. We apply the equivalent particle approach to the 
perturbed Nonlinear Schrödinger Equation with dual 
power law or higher order nonlinearity to calculate the 
transverse acceleration and power.  In section 2, we briefly 
introduce previous results for clarity, the scalar nonlinear 
nonparaxial evolution equation and discuss some of its 
features using soliton theory.  In section 3, we use the 
equivalence particle approach to calculate the power and 
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acceleration to show a swing effect under a Gaussian 
profile perturbation. Lastly, we numerically simulate the 
higher order NLSE investigating one and two spatial beam 
propagation.  

 
 
2.  Model 
 
Considering a nonlinear medium with a material 

polarization expansion in terms of susceptibility tensors 
that are represented by dielectric tensor considering one 
diagonal component with an amplitude B, we have  
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where ε is the dielectric constant,  
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are the index of refraction, the cubic nonlinear index, and 
the quintic nonlinear index respectively. The 
approximation can be rewritten as 
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The last two terms of equation (5) are the intrinsic and 

effective quintic nonlinear indices. With only the intrinsic 
index n4 considered, this provides stability for the 
fundamental eigenmode solutions to multi-dimensional 
Nonlinear Schrödinger Equations (NLSEs). Based on 
equation (5), we can consider the nonlinear Helmholtz 
equation considered by Blair[20]  

 
 

with z being the longitudinal propagation coordinate, x the 
transversal coordinate, By the amplitude of the field, and 
β the wave vector for the guided mode. This is a (1+1)-D 
scalar equation in transverse electric (TE) mode. The y 
direction can be ignored on the basis that the optical field 
is infinitely extended. Normalizing equation(6) one gets 
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where w0 is the width of the beam. The last two terms in 
equation (7) are considered perturbations with κ being the 
strength of the perturbation called the fractional 
bandwidth. The variable ν in equation (7) is relative 
strength of the intrinsic quintic nonlinearity. The equation 
is a non-slow varying approximation (NSVA) nonparaxial 
wave equation that contains terms of the order κ2. The 
nonparaxial effect in the equation is higher order 
diffraction and nonlinearity (or χ(5) effect[21]). Ignoring 
the nonparaxial effect, we have a type of homogenous 
NLSE, 
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According to [20], last two terms of equation(7) can 
be approximated by expansion of the high order diffraction 
terms 
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Using the expansion (equation (12)) and equation (7), 
the new high order equation  
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Self focusing can be enhanced or opposed by quintic 
nonlinearity. The last term in equation (13) will saturate at 
maximum value and then decrease when n2 is positive and 
n4

total is negative. The nonparaxial terms also decrease the 
longitudinal wavenumber by –kx

4/8β3 where kx is the 
transverse wave number with kx=βsinθ [21]. Equations of 
motion for the power, momentum, Hamiltonian, phase, 
and wavenumber can be derived for equation (13) 
according to Biswas[15,21-26]. The normalized solution 
can be obtained by assuming a solution of the form 
 

[ ] ϑγκαζκζζ )(exp)()(sec)( 22 ++= ighq (16) 
                                    
and solving the equation with perturbation expansion 
 

[ ])(sec2)(sec
3

)( ζζνζ hhg −=              (17) 

 

with 
4
1

−=γ                                             
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        This is the solution for the nonparaxial wave equation 
(21), which is considered “quasi-soliton”.  

Going back to equation (7), one can use a similar 
transformation like equations (8-10) and the resulting 
equation is  
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Here, again there is a higher order of diffraction and 
nonlinearity, but one can ignore the high order diffraction 
come up with the equation for the parabolic power law 
which is 

[ ] 0
2
1 42

2

2
=′++

∂
∂

+
∂
∂ qqvqqqi

ζϑ
               (23)  

 
 and  
                                                                   

 
2νκ=′v  

 
removing the prime from ν. According Biswas[21], the 
stationary solution of equation(23) is 
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Also, for this homogenous equation, the conserved 
integrals of motion are 
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where equations (29-31), (Biswas [21]) F(α,βh ;γh,t) is the 
Gauss hypergeometric function defined as 
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and B(l,m) is the beta function that is defined as 
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For temporal solitons, the temporal type of equation 

(22) represents nonlinear interaction between the high 
frequency Langmuir waves and the ion-acoustic wave by 
pondermotive forces [14,15,21]. Also, with this optical 
higher nonlinearity χ(5) , this model could be used to 
investigate CdSxSe1-x doped glasses [14,15,21]. The χ(5)  

nonlinearity becomes significant in transparent glass with 
intense femtosecond pulses at a wavelength of 
620nm[29,31,32].  

The nonlinear scalar Helmholtz spatial equation has 
been reduced to a nonlinear scalar spatial parabolic law 
equation.  Lastly, the term νκ2   must be sufficiently small 
for the perturbed solution equation (22) to be valid. This is 
considered in the next section using the equivalence 
particle theory to examine spatial beam propagation.  
 

3. Equilvalent-particle theory with the  
    Parabolic Law Nonlinearity 
     
Suppose one sets a perturbation on the index 

refraction in equation(34) below, which can be expressed 
as  
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provided  ∆n(x)<<1. So we assume higher order 

diffraction for this case , 
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V is the perturbation potential responsible for transversal 
trajectory of the soliton beam. It depends on the index 
profile, intensity profile of the beam, and the higher order 
nonlinearity. Here, similar to Garzia[8], Suryanto[9] and 
Crutcher and Edwards[11,12], we assume the 
electromagnetic field moves as a particle qq* and is a 
function of ς-ς . This is considered the equivalent particle 
theory description [9]. We can calculate several 
parameters based on this theory, such as normalized power 
(similar to equation(29)):     
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for the normalized field q. So, the acceleration that 
includes the perturbation potential is  
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The approach here is to show if there is swing effect 
with the soliton beam by calculating the power and 
acceleration with higher order nonlinearity [20]. We will 
assume a perturbation Gaussian profile similar to Garzia 
[8] which is  
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where q is a solution  given by equation (24) 
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We assume change of index of refraction to be smaller 

than one and the variable b << C,A. Now the perturbation 
potential V can be expanded in a power series about 

ςς = . So, the expansion to first order is  
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Using equation (40) the beam power and taking the 

limit to infinity is  
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Substituting equation (49 and 50) into equation(43) 

one gets 
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being the acceleration .  Again, the hypergeometric and 
Beta function (B) is defined as 
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In Fig. 1 (a-c), the acceleration profile tends to zero in 

both directions depending on the average position ς. The 
initial profile is shifted with respect to the center, and the 
change in refractive index ∆n with proper sign can keep 
the beam moving toward the center. Here, maximum 
velocity is reached and there is a force that inverts it sign 
when the beam passes through it. So the same force acts 
on the beam in the opposite direction. An oscillatory 
behavior is created on the beam. This swing effect has the 
same behavior on a perturbed homogenous NLSE without 
higher order nonlinearity [8,9,11,12].  The results of Fig. 
1, show an swing effect with parabolic law spatial solitons. 
This effect has also been shown for power law spatial 
solitons with a triangular perturbed potential [26,27].  
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Fig. 1. (a) and (b) are acceleration(equation ) versus the mean ς showing a swing effect of the spatial 

soliton with higher  order  nonlinearity. In (c), for different value of a  the swing effect can start negative. 
 
 

 
Thus, the parabolic law soliton transverse motion 

follows from the principles of classical mechanics. More 
specifically, once the equation (43) is determined the wave 
trajectory is unequivocally provided. Lastly, various 
intensity profiles in the same index profile are subject to 
different forces and therefore move along different 
trajectories. 
 To verify certain transversal motion of the spatial 
soliton , we simulate some of the Nonlinear Schrödinger 
Equations with and without perturbation. First, we 
simulate   
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   In Fig. 2(a),with N=10 grid points, the beam profile is 
constant with no deviation from its path which is what is 
predicted using soliton theory[13,20]. But in the next 
figure 2(b), we consider a perturbed Nonlinear 
Schrödinger Equation  
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with a Gaussian type profile perturbation potential with 
initial profile 
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2

exp()(sec)0,( ςςϑς ihq ==                        (57) 

(a) A=1.104 a=3.36 b=0.01,0.07,0.04,0.001 
∆n=0.05 

(b)A=1.104 a=2.51 b=0.01,0.07,0.04,0.001 
∆n=0.05 

(c) A=1.104 a=1.46 b=0.01,0.07,0.04,0.001 
∆n=0.05 
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(a)                                                  (b) 
                                                                    

 
(c) 

 
 

Fig. 2. (a) and (b) are acceleration(equation ) versus the mean ς showing a swing effect of the spatial soliton with 
higher order nonlinearity. In (c), for different value of a the swing effect can start negative. 

 
 
 

This was done with N=500 steps with b=0.07 and 
∆n=0.5.  The beam profile mostly remains constant but 
swings periodically as it propagates along ϑ. Using the 
equation for acceleration one can calculate the period of 
oscillation. To do this first calculate the maximum point of 
the acceleration and then calculate the mean acceleration 
using  
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where w3 is the initial position of the beam with respect to 
the center of the index profile. Then using the classical 
mechanics equation of motion 
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with  ς=w3, M is the distance needed to propagate a swing 
to transverse distance 2w3. F. Garzia [8] using equations 
(40, 43,and 54) came up with a mean acceleration 
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with initial beam profile 
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the resulting period of oscillation is 
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Edwards and Crutcher [11,12] calculated a mean 

acceleration and period of oscillation with a triangular 
index profile perturbation  
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and 
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where bT controls the width of the profile, C is the 
amplitude, and S is the initial position of the beam with 
respect to the center of the index profile.  Since the focus 
in this study is whether there is a swing effect with higher 

order nonlinearity, calculation of the mean acceleration 
and period of oscillation for higher order nonlinearity will 
be a topic considered for future investigation.  
       Now taking into account simulating equation (34) for 
the higher order nonlinearity for spatial which is  
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In Fig. 3(a) below, the NLSE without perturbation 
was simulated using Biswas[21] solution as initial profile 
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with A=0.75, νpert =0.001 and 50 x 10 grid points. The 
beam is a spatial soliton that propagates with no digression 
from its straight line path and unvarying amplitude with 
higher order nonlinearity. But in figure 3(b), we include 
the perturbation potential from equation (66) which there 
is an oscillation with approximately one period on a 50 x 
500 grid points. 

This was done with an initial profile of equation (67). 
By means of equation(66), in figure 3(c) and 3(d) there 
was a swing effect with 50x350 grid points with A=1 
amplitude, νpert =0.000001, and a complex factor exp(iς/2) 
multiplied to the initial profile. Also, in this case we chose 
to use a=0.5 instead of using equation (68). In Fig. 3(e) 
and 3(f),we simulated a higher frequency of the spatial 
soliton beam with 50x350 grid points with A=1.75,                   
νpert =0.000001,and a complex factor exp(iς/2). In figure 
4(a) and 4(b) below, we increased the number of 
transverse points to 12000. Here, there was no swing 
effect via equation (67) as the initial profile, but there was 
a movement away from a straight line path. 
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(a)                                                                       (b) 

 

       
(c)                                                                             (d) 

 

          
(e)                                                                                    (f) 

 
Fig. 3.Simulation of the higher order nonlinearity NLSE (a)∆n=0 , A=0.75, νpert =0.001 a=1.000037 (b) ∆n=0.5 , 
A=1, νpert =0.000001 a=0.5,b=0.07,  (c) and(d) ∆n=0.5 , A=1, νpert =0.000001 a=0.5,b=0.07 with initial profile 
equation (67)  (e)  and   (f),  and   (d) ∆n = 0.5, A = 1.75,   νpert =  0.000001  a = 0.5, b = 0.07  with   initial   profile  
                                                                                           equation (67). 
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In Fig. 4(c) and 4(d) above, using equation (66), a two 
beam profile was used to start the NLSE for simulation of 
the higher order nonlinearity. There was interaction of the 
two spatial beams one fourth of a period from the initial 
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position. But one of the beams continues to swing at a 
certain period while the other beam approaches the 
negative longitudinal boundary. The oscillatory beam has 
a higher amplitude (A1=1) compared to the beam with an 
amplitude (A2=0.75) that approaches the negative 
boundary. This could lead to the possibility that a spatial 
beam with a swing effect can control another beam 
differently than the normal spatial beam interaction of 
repulsion and interaction by just passing through each 
other. In figure 5(a) and 5(b), repulsion is demonstrated up 
to a grid step 150. Both beams had incomplete swing 
effects with smaller amplitude beam (A1=.75) 
approaching the negative boundary. Both beams shared the 
similar paths from 0 to approximately 140 grid points. In 
figure 5(c) and 5(d), mixing of two beams with swing 

effect is demonstrated up to 200 grid points before the 
smaller amplitude beam (A1=1) approaches the positive 
boundary. In figure 5(b), the smaller amplitude beam has a 
distorted swing before diverges to the boundary. Here, 
theoretically we have shown that light beams with a swing 
effect can possibly control other straight line spatial beams 
by putting them into an oscillatory period. Oscillatory 
spatial beams can also stop other oscillatory beams from 
propagating in a certain direction and shifting them back 
to straight path spatial beams. Further study would be 
needed to see if two interacting swing spatial beams can 
oscillate together at longer distances. Lastly, one could 
also investigate the conservation of energy and required 
conditions to set off these beam interactions which is a 
possible focus of future investigation.  

 

      
 

(a)                                                 (b) 
 

 
 

(c)                                                              (d) 
 

Fig. 4.Simulation of the higher order nonlinearity NLSE with no swing but  a deviation from straight path in  (a)and 
(b) with ∆n=0.5 , A=0.25, νpert =0.000001 ,b=0.07, on a 250x12000 grid .  Two beam interaction (c) and(d) with 

∆n=0.09, A1=1,A2=0.75,  νpert = 0.000001  a = 0.5, b = 0.07   with   initial  profile  equation (69) . 
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(a)                                                 (b) 

 
(b) (d) 

(c)  
Fig. 5.Simulation of the higher order nonlinearity NLSE. In (a) and (b) Two beam interaction shows repulsion  with 
∆n=0.09, A1=1,A2=0.75, νpert = 0.000001 a=0.5,b=0.07 with initial profile equation (69). In (c) and(d), Two beam 
interaction  shows  mixing with  each  beam  having  swing  up  to around N=200 steps with  ∆n=0.5 , A1=2,A2=1,,              

νpert =0.000001 a=0.5,b=0.07 with initial profile equation(69) . 

                                                                          
4. Conclusions 
 
In order to understand features of the parabolic law 

Nonlinear Schrödinger Equation, we started with the 
expansion of dielectric constant (or index of refraction) 
which included constant and tensor terms with electric 
field amplitudes. From this, one was able to derive the 
nonlinear Helmholtz equation which is the NLSE with 
higher order diffraction and nonlinearity. We normalized 
the equation and approximated the higher order terms into 
nonlinear equation that can be studied by methods used by 
Biswas[21]. Using perturbation theory, a solution to 
equation presented that was dependent on the coefficient 
of the higher order nonlinearity (χ(5)). Blair[20] pointed out 
that these solutions are nonparaxial spatial solitons or 

quasi-solitons due to the higher order diffraction. We 
applied the equivalence particle theory to higher order 
normalized NLSE assuming no higher order diffraction 
which reduced to a parabolic law spatial NLSE. Even with 
higher order nonlinearity the spatial solitons have swing 
effect. We also show the swing by simulation of the 
perturbed NLSE. Taking one further step, the two beam 
interaction features were presented simulating the 
perturbed equation. It was shown that the two beams 
oscillate together, repulse the oscillation, and change an 
oscillating beam to a straight line away from the other 
oscillating beam. By means of further study, this may be 
practical for optoelectronics or short distance nonlinear 
optical devices.  
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